
during this time. It follows from Eq. (2.1) that a hold of 15-20 min at fixed T I is suf- 
ficient. Let us study the case t, = 20 min. We take the following temperature intervals: 
AT = I00, 200, and 300 K. As in the experiments in [3], we take the same value for the 
lower temperature in all of the cycles: T o = 283 K. Then T I = 383, 483, and 583 K for all 
of the chosen temperature intervals. Inserting the values of T I and AT into Eq. (2.1) at 
t = t, = 1200 sec, we obtain the corresponding growth coefficients: 71 = 1-37"i0-s, 72 = 
7.1"10 -5 , 7~ = 20 "10-5 i/cycle. 

A line is drawn through the theoretical values of the growth coefficient in Fig. 2. 
The experimental results are shown by points. The positions of the points shows that the 
results obtained theoretically agree completely with the experimental data. 

I, 

2. 

3. 
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BEHAVIOR OF RUBBER IN SHOCK WAVES AND RAREFACTION WAVES 

Yu. B. Kalmykov, G. I. Kanel', 
I. P. Parkhomenko, A. V. Utkin, 
and V. E. Fortov 

UDC 532.598:678.01 

There is no literature data on the properties of filled elastomers under shock-loading 
conditions. Despite this, rubber-like materials are used to damp pulses from shock compres- 
sion and to solve other practical problems. The behavior of such materials under normal 
conditions is distinguished by several specific features [I, 2]; it is interesting to deter- 
mine the degree to which these features of filled elastometers are manifest during intensive 
shock loading. 

The present article reports results of the recording of the shock compression, unloading, 
and dynamic tension of vacuum-treated white rubber of grade 7889. 

The specimens were cut from a sheet 1 cm thick. The measured density of the specimens 
was 1.34 g/cm 3. The speed of sound at atmospheric pressure was 1.5 km/sec. Tests in simple 
tension conducted at a rate of 10-2-10 -3 sec -I showed that the initial Young's modulus of the 
rubber lies within the range 2-3 MPa, while the true breaking stress S n = 88 MPa. At the 
moment of rupture, the relative elongation of the working part of the specimen was 609%. The 
permanent set after rupture was about 10%. 

Plane shock waves (SW) were created in the specimens by strikers 2-7 mm thick made of 
aluminum or organic glass, as well as by the explosive detonation of lenses in direct con- 
tact with the specimen. The strikers were propelled by explosive devices described in 
[3, 4]. The pressure associated with the shock compression was varied by changing the 
velocity of the strikers and by using shields with different dynamic stiffnesses. The 
shields were placed between the striker and the specimen. We used manganin transducers to 
record the pressure profile P(t) in the specimen at the boundary with the shield and at a 
prescribed distance from it. We also used the method of Doppler laser interferometry [5, 6] 
to record the velocity profiles of the rear surface of the specimens u(t) in cases when the 
pressure pulse exited into a barrier with a low dynamic stiffness or into air. 

Figure 1 shows results of measurements of the evolution of pressure profiles 1-4 in the 
rubber. These results are for the loading conditions shown in Table i. No qualitative fea- 
tures connected with the specific properties of the rubber were seen on the P(t) profiles 
in the investigated range of pressures from 2 to 6 GPa. The incompleteness of the unloading 
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TABLE 1 

Profile 
�9 (Zig. 1) P, GPa 

5,80 
4,20 
2,80 
i,95 
i,36 

D, l~ /sec  

4,0~ . 

3,65 
3,20 
2,84 

u, kin/see 

l,iO 
0,88 
0,67 
0,52 

vo 

0,726 
0,760 
0,792 
0,8i6 

c, km/sec 

4,80 
4,33 

3,18 

in the rarefaction waves can be attributed to the relatively high dynamic stiffness of the 
strikers and shields used in the tests. 

The measurements were used to directly determine the pressure of the shock compression 
P, the SW velocity D, and the Lagrangian velocities of the front and subsequent sections of 
the rarefaction wave a(P) = c(P)V0/V. Table i shows the results of the measurements and the 
values of mass velocity u, degree of compression V/V0, and speed of sound in the shock-com- 
pressed rubber c determined from these measurements. With allowance for the measured speed 
of sound at atmospheric pressure, the Hugoniot curve of the rubber in the investigated range 
is described by the following expression with an error equal to the measurement error 

D = t .5  + 2 ~ 8 9 u - -  0.53u 2, ( 1 )  

where D and u are in km/sec. 

The results of measurements of the Lagrangian velocities of the front of the rarefac- 
tion waves are shown by the clear points in Fig. 2, with an indication of the experimental 
error. The solid curves originating from these points correspond to the Lagrangian velocity 
of propagation of fixed levels of pressure in the unloading waves. Also shown are measured 
values of SW velocity (dark points) and the Hugoniot curve (curve 3) constructed from Eq. (I). 
Curve 2 is the dependence of the Lagrangian speed of sound on pressure calculated in a quasi- 
acoustic approximation, i.e., with the assumption that the Hugoniot curve and the isentropic 
unloading curve coincide in the coordinates P vs u. The quasi-acoustic approximation pro- 
vides good agreement with the results of measurement of the bulk speed of sound in metals [7] 
within a wide range of shock pressures. The upper bound for the bulk speed of sound is the 
derivative c H = (dP/dp) I/2 along the Hugoniot curve; when this quantity is equal to the equi- 
librium speed of sound, the Gr~neisen coefficient of the substance is equal to zero. Curve 1 
in Fig. 2 is the relation aH(P ) = cH(P)V0/V. It is evident that the velocities of the rare- 
faction wavefront are roughly half as great or greater than aH(P). In other words, the front 
of the rarefaction wave in shock-compressed rubber propagates at a velocity in excess of the 
equilibrium value of the bulk speed of sound. 

The high velocities of the rarefaction wave - almost twice as great as the corresponding 
values of shock-wave velocity - lead to rapid decay of the shock wave in the rubber. This 
makes it an efficient material for damping shock-wave effects. 

As unloading proceeds, the measured phase velocity in the wave approaches curve 2 (Fig. 
2), calculated in the quasi-acoustic approximation. It is natural to link the character of 
the change in phase velocities in the rarefaction wave with the elastoplastic properties of 
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shock-compressed rubber. In this case, taking curve 2 as the pressure dependence of the 
speed of sound, we can evaluate the Poisson's ratio of shock-compressed rubber 

v 3 (cb/~z) ~ - 

.3(~z)~ + ~ ' 

where c b and cs are the bulk and longitudinal speeds of sound. The results of such an eval- 
uation are shown in Fig. 2 (curve 2). It is evident that as shock pressure increases, the 
Poisson's ratio of the rubber decreases from a value close to the typical value of 0.5 for 
elastomers (v 0 = 0.4998) to a value of 0.36 at a pressure of 4.2 GPa. This latter value is 
more typical of solids. This means that the rubber becomes glass-like under the influence 
of high pressure. Vitrification of rubber under the influence of pressure at room tempera- 
ture was seen in [8] in tests which subjected the specimen to static pressure. Here, the 
Young's modulus and yield point of the material increased by two-three orders of magnitude 
with a narrow range of pressure. 

To determine the dynamic tensile strength of rubber, we recorded velocity profiles u(t) 
for the rear surface of specimens in contact with a barrier made of a material with a low 
dynamic stiffness. The same setup was used previously to study fragmentation effects in 
liquids [i] and solids [I0]. The measurements were conducted by Doppler laser interfero- 
metry. To reflect the probing radiation, aluminum foil 20 ~m thick was stuck to the speci- 
men surface. The pulses of shock compression were excited in specimens I0 mm thick by 2-mm- 
thick strikers of organic glass traveling at 850 m/sec. The Hugoniot curves of Plexiglas 
and rubber are close, so the use of the former as the material of the striker and shield 
ensures complete unloading in the first rarefaction wave. 

The measurement results are shown in Fig. 3, where curve i was obtained in a test with 
a barrier consisting of ethanol. Curve 2 was obtained in a test with a barrier consisting 
of hexane. Information on the shock compressibility Of these substances was taken from 
[ii, 12]. With allowance for the speed of sound at atmospheric pressure, the Hugoniot 
curves of the barrier materials in the pressure range up to i0 GPa were represented in the 
form D = 1.08 + 2.23u - 0.197u 2 for hexane and D = 1.16 + 2.23u - 0.181u 2 for ethanol. 

The pressure pulse at the exit of the specimen has a triangular profile and is quite 
attenuated. A sharp reduction in the curvature of the rarefaction wave is recorded on the 
u(t) profiles 4 ~sec after the SW reaches the contact surface. This discontinuity is ob- 
viously the result of wave interactions in the specimen. Figure 4 shows curves depicting 
the change in state with interaction of the waves in the coordinates P vs u. The numbers 
1-3 denote the Hugoniot curves of rubber, ethanol, and hexane, while the dashed line shows 
the adiabatic curves for the unloading of the rubber in tests with hexane and ethanol cor- 
responding to a striker velocity of 850 m/sec. The numbers correspond to thenotation in 
Fig. 3. A reflected rarefaction wave appears in the specimen after the SW reaches the in- 
terface with the barrier. The interaction of the rarefaction wave with the incident wave 
leads to an additional drop in pressure. As a result, tensile stresses are created in the 
specimen. The magnitude of these stresses is determined on the P vs u diagram by the inter- 
section of the paths of the changes of state along the corresponding c+ and c_ character- 
istics. Analysis of the P vs u diagrams shows that the points of inflection B and B' on the 

118 



u(t) profiles correspond to the attainment of zero pressure or a pressure which is somewhat 
lower (on the order of i0 MPa) in the specimen. This means that the appearance of the in- 
flection points on the u(t) profile can be attributed to rupture of the rubber under the 
influence of small tensile stresses. The subsequent slow decrease in velocity is then ex- 
plained by re-reflection of the rarefaction wave from the rupture surface. However, the 
proposition that rubber has a low tensile strength is inconsistent with the results of static 
tests. 

If the strength of a body is negligibly low, then the velocity of a shock wave should 
remain constant after it reaches the free surface of the body, regardless of the reduction 
in parameters in the loading pulse. Figure 3 shows the velocity profile of the surface of 
the rubber specimen when the SW exits into air (curve 3). The velocity of the Plexiglas 
striker in this test was roughly 5% lower than in the preceding experiments. The dashed 
line in Fig. 3 shows the velocity profile of the free surface of the specimen calculated 
from the results of tests conducted with barriers when it was presumed that the specimen 
remained intact. 

The measured velocity profile of the free surface differs from the profiles for the 
extreme cases of high and negligibly low dynamic tensile strength for rubber. The central 
part of the specimen remained intact through the entire thickness in this test. Visual in- 
spection of the axial section of the specimen with the naked eye and with a microscope 
having a magnification up to • failed to show signs of rupture. Thus, the behavior of 
rubber under dynamic tension is characterized by significant differences from the cases of 
solids or liquids. 

It is known [13] that the rupture of an elastometer is preceded by the formation of 
microscopic discontinuities in the specimen. These discontinuities begin to form at 
stresses much lower than the breaking stresses. The formation of the discontinuities in and 
of itself - due to delamination or pore formation - does not constitute rupture. Thus, in 
tests in which vulcanized rubber was subjected to triaxial tension [14], cavities began to 
form at stresses of i-3 MPa and a low strain level; the specimens then underwent further 
deformations of Several hundred percent and a simultaneous increase (with a low absolute 
value) in the tensile stresses. The deformation regime in the neighborhood of the cavities 
deviated from triaxiality after the cavities were formed, and the formation of large re- 
versible strains became possible. 

These features of the deformation of elastomers explain the anomalous behavior of the 
rubber in dynamic tension. The formation and reversible growth of cavities lead to a reduc- 
tion in the bulk modulus of elasticity and the speed of sound in the rubber in the region of 
negative pressures. The decrease in sonic velocity in turn causes a reduction in the curva- 
ture of the rarefaction wave on the velocity profile on the specimen's free surface. 

The Lagrangian speed of sound a t in tensioned rubber can be evaluated by comparing the 
actual and theoretical (with the assumption of retention of the initial bulk modulus of 
elasticity) curvatures of the velocity profile of the free surface. If we assume that zero 
pressure is reached on a certain curve having the slope c o in the coordinates distance x vs 
time t during the interaction of the incident and reflected waves and that the sudden change 
in the elastic modulus occurs when the pressure is equal to zero, then from a simple analysis 
of t vs x curves of the process we obtain a~ = c0/(26~/u - i), where u~, u are the curvatures 
of the theoretical and experimental velocity profiles of the free surface. In the case being 
examined, u t = i00 m/(sec.psec) u = 30 m/(sec.psec). Taking c o equal to the speed of sound 
under normal condition (c o = 1.5 km/sec), we find a t = 0.27 km/sec for the initial section 
of the experimental u(t) profile. It can be seen from Fig. 3 that the curvature of the mea- 
sured u(t) profile still decreases over time, which is evidence of a further reduction in the 
bulk modulus of elasticity. 

Knowing the speed of sound, we can evaluate the slope dP/du = • of the path of change 
of the state of the rubber along the characteristic for the region P < 0. Thus, we can also 
evaluate the maximum tensile stresses which occur in the experiments in which the rubber was 
unloaded in air. The corresponding curves are shown in Fig. 4. It follows from this figure 
that the decrease in velocity seen in Fig. 3 (curve 2) corresponds to the attainment of a 
tensile stress no greater than 20 MPa. The highest negative stresses Om that can be reached 
in rubber under the given loading conditions are estimated to be 100 MPa. 

Thus, the results of our experiments illustrate specific features of the behavior of 
rubber under shock loading. The differences in the dynamic properties of rubber are related 
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to its hardening under the influence of shock compression and the potential for the revers- 
ible growth of discontinuities during dynamic tension. 

We thank V. ~. Zgaevskii and V. K. Golubev for their discussion of the findings. 
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MOVEMENT OF THE FREE BOUNDARY OF A HALF-SPACE DURING THE PROPAGATION 

OF AN OBLIQUE STRAIGHT CRACK 

V. A. Saraikin UDC 539.375 

Internal defects which grow dynamically in a material generate disturbances. The elastic 
model of the propagation of a dislocational discontinuity [1-4] is widely used in geophysics 
to identify the type, orientation, and size of large-scale defects - earthquake foci [1-4]. 
In accordance with this model, a jump in the displacement vector is assigned at the site of 
the discontinuity to describe the advance of the edges of the latter. This description is 
independent of the details of the distribution of the initial internal stress field. The 
orientation of the nodal planes found by this approach agrees poorly with experimental find- 
ings when the discontinuity is of the shear type. When an appropriate choice is made for 
the jumps in the displacements, the asymptote of the solution in the long-range field for 
a dislocational discontinuity differs little from the solution of the problem for a point 
source given by force couples without moments. 

A method of describing a discontinuity (crack) which is exact within the framework of 
linear fracture mechanics involves specifying a drop in stress on the discontinuity [2]. The 
displacement field and the orientation and size of the crack in this model are consistent 
with the stress field, which itself conforms to the condition of dynamic instability at the 
crack tip. 
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